Stability and Reactivity of All-Metal Aromatic and Antiaromatic Systems in Light of the Principles of Maximum Hardness and Minimum Polarizability

P. K. Chattaraj,*,[‡] D. R. Roy,[‡] M. Elango,[†] and V. Subramanian*,[†]

Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India, and Chemical Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India

Received: July 20, 2005

It is demonstrated that among various possible isomers of all-metal aromatic compounds such as Al_4^{2-} and their complexes the most stable isomer with the minimum energy is the hardest and the least polarizable. A similar situation is observed for different isomers of all-metal antiaromatic compounds such as Al_4^{4-} and their complexes. It is shown that linear Al_4^{4-} is energetically more stable than its cyclic isomer. The reaction energies associated with the complexation processes highlight the stability of those complexes. The difference in energy, hardness, and polarizability between a cyclic molecule and its linear counterpart convincingly shows that an aromatic molecule exhibits negative changes in energy and polarizability but positive changes in hardness as expected from the principles of minimum energy, minimum polarizability, and maximum hardness. Although the aromaticity of Al_4^{2-} is unequivocally established through this study, the antiaromaticity picture in the case of Al_4^{4-} is shown to be poorly understood;however, the present analysis sheds light on this controversy.

Introduction

Kekulé¹ introduced the concept of aromaticity to explain the extraordinary stability of benzene, Pauling² explained aromaticity using quantum mechanics, and Hückel³ tried to rationalize the same through his famous $(4n + 2) \pi$ -electron rule. This intriguing concept has occupied the minds of almost all researchers in chemistry over the ages.⁴ An accepted definition^{4,5} of aromaticity may be given as follows: "An aromatic molecule is one in which electrons are free to cycle around circular arrangements of atoms connected via identical bonds which are resonance hybrids of single and double bonds. It displays enhanced chemical stability compared to similar nonaromatic molecules and posseses significant local magnetic field, a planar structure, and $(4n + 2, n \ge 0) \pi$ -electrons in a single ring. On the other hand, an antiaromatic molecule contains $4n \ (n \neq 0)$ π -electrons in a cyclic planar, or nearly planar, system of alternating single and double bonds".

Originally, the aromaticity concept was restricted to cyclic organic molecules with an occasional mention of inorganic molecules such as borazine (inorganic benzene). There has been a recent upsurge of interest in the field with the advent of aromaticity and antiaromaticity associated with metal clusters.^{6–19} A series of bimetallic clusters with the chemical composition MAl_4^- (M = Li, Na, K, and Cu) are synthesized and investigated⁶ through negative ion photoelectron spectroscopy using a laser vaporization source which is supported by ab initio calculations. In all of these molecules, a square planar Al_4^{2-} unit is present and is linked to the M⁺ cation to give an overall pyramidal shape of MAl_4^- . It is argued that the presence of two delocalized π -electrons in the Al_4^{2-} dianion makes it aromatic by obeying Hückel's (4*n* + 2) rule, which is authenticated by its planar and square structure (due to delocalized π -

calization) in all the MAl₄⁻ species. Some neutral M₂Al₄ molecules have also been theoretically studied,⁶ wherein the presence of Al₄²⁻ is shown to be conspicuous. Theoretical calculations have also shown⁷ the transformation of a nonaromatic Al₄Cl₄(NH₃)₄ molecule into a π -aromatic Na₂Al₄Cl₄-(NH₃)₄ molecule. High-level ab initio calculation of electron affinities of Al_n clusters has highlighted⁸ that Al₄²⁻ is much more aromatic than the prototypical aromatic organic molecule, benzene. Although the latter with only π -aromaticity possesses two resonating Kekulé structures, the former with three independent delocalized π - and σ -bonding aromatic systems, separately obeying the (4*n* + 2) rule, gives rise to 64 Kekulé-like structures. It has been shown⁸ that the Al₃⁻ anion also exhibits both π - and σ -aromaticity with nine possible resonating structures.

The all-metal rectangular antiaromatic molecule Al4⁴⁻ is argued⁹ to be present in Li₃Al₄⁻, produced by laser vaporization and analyzed by using photoelectron spectroscopy and ab initio calculations. It is shown that the minimum energy structure of Li₃Al₄⁻ contains a rectangular Al₄⁴⁻ tetraanion which is Hückel antiaromatic because of the presence of four π -electrons (4n rule) and is stabilized by three Li⁺ ions. It is also shown⁹ that Al₄⁴⁻ is π -antiaromatic and σ -aromatic at the same time. Antiaromaticity in the Al₄⁴⁻ molecule is also theoretically shown 10 to be stabilized by $\mathrm{Na^{+}}$ counterions in $\mathrm{Na_{4}Al_{4}}$ and $Na_3Al_4^-$ clusters. Although Al_4^{4-} is prescribed¹¹ through its electron localization function (ELF) analysis to be overall antiaromatic, it is considered to be net aromatic^{12,13} because its σ -aromaticity overwhelms its π -antiaromaticity, as is shown through its calculated nucleus independent chemical shift (NICS)¹² and magnetic field induced current density¹³ values. The NICS (0) and NICS (1) are defined as the amount of absolute magnetic shielding calculated at the ring center and 1 Å above it, respectively. Similar theoretical analysis on aromatic hydro metal systems is performed.14 All-metal aromatic compounds such as Hg_4^{6-} , Ga_4^{2-} , and In_4^{2-15} and antiaromatic¹⁶

^{*} Corresponding authors. E-mail: pkc@chem.iitkgp.ernet.in (P.K.C.); subuchem@hotmail.com (V.S.).

[‡] Indian Institute of Technology.

[†] Central Leather Research Institute.

compounds such as Sn_6^{2-} , Si_6^{2-} , and Si_{12}^{2-} are also known. Aromaticity and antiaromaticity in other silicon clusters have been reported.¹⁷ Complexation of all-metal aromatic¹⁸ and antiaromatic¹⁹ systems is studied at the RB3LYP/6-311G** level of theory. Stabilization of antiaromatic Al_4^{4-} through the formation of transition-metal complexes is analyzed¹⁹ in terms of the calculated energy and NICS values.

Theoretical Background

Density functional theory (DFT)^{20,21} has been quite successful in providing theoretical bases for popular qualitative chemical concepts introduced from time to time to explain chemical reactivity and selectivity, e.g., electronegativity,^{22,23} chemical potential,²³ hardness,^{24,25} and electrophilicity.²⁶ The hardness concept was introduced by Pearson through his famous hard– soft acid–base principle^{24,25} which states that "hard likes hard and soft likes soft". Another hardness-based electronic structure principle is the maximum hardness principle (MHP),²⁷ which states that "there seems to be a rule of nature that molecules arrange themselves to be as hard as possible". Constancy of the chemical and external potentials is demanded by the MHP. A related principle is the minimum polarizability principle (MPP),^{28,29} which states that "the natural direction of evolution of any system is towards the state of minimum polarizability".

In the present paper, we analyze the aromaticity and antiaromaticity of all-metal systems in light of the MHP and the MPP. A DFT (B3LYP/6-311+G*) calculation is performed to find out the energy (*E*) and polarizability (α) values. Also, the chemical hardness (η), the chemical potential (μ), and the electrophilicity index (ω) are calculated using both the Koopmans method and the Δ SCF method.

The quantitative definitions for the chemical potential (μ) and electronegativity (χ)²⁰ for an *N*-electron system with total energy *E* can, respectively, be given as

$$\mu = \left[\frac{\partial E}{\partial N}\right]_{\nu(\vec{r})} \tag{1}$$

and

$$\chi = -\mu = -\left(\frac{\partial E}{\partial N}\right)_{\nu(\vec{r})} \tag{2}$$

where $v(\vec{r})$ is the external potential.

Chemical hardness (η) has been identified as a useful global reactivity index in atoms, molecules, and clusters.²⁰ The theoretical definition of chemical hardness has been provided by DFT as the second derivative of electronic energy with respect to the number of electrons (N) for a constant external potential $v(\vec{r})$, viz.,

$$\eta = \frac{1}{2} \left(\frac{\partial^2 E}{\partial N^2} \right)_{\nu(\vec{r})} = \frac{1}{2} \left(\frac{\partial \mu}{\partial N} \right)_{\nu(\vec{r})}$$
(3)

Use of a finite difference method can give the working equations for the calculation of the chemical potential, the electronegativity, and the chemical hardness by

$$\mu = -\frac{\mathrm{IP} + \mathrm{EA}}{2} \qquad \chi = \frac{\mathrm{IP} + \mathrm{EA}}{2} \qquad \eta = \frac{\mathrm{IP} - \mathrm{EA}}{2} \tag{4}$$

where IP and EA are the ionization potential and electron affinity of the system, respectively.

Parr et al.²⁶ defined the electrophilicity index, which measures the stabilization in energy when the system acquires an additional electronic charge, ΔN , from the environment as

$$\omega = \frac{\mu^2}{2\eta} \tag{5}$$

If \in_{HOMO} and \in_{LUMO} are the energies of the highest-occupied and lowest-unoccupied molecular orbitals, respectively, then the above equations can be rewritten using Koopmans' theorem²⁰ as

$$P \approx -\epsilon_{\text{HOMO}} \qquad \text{EA} \approx -\epsilon_{\text{LUMO}}$$
$$\chi = -\frac{\epsilon_{\text{HOMO}} + \epsilon_{\text{LUMO}}}{2} \qquad \eta = \frac{\epsilon_{\text{LUMO}} - \epsilon_{\text{HOMO}}}{2} \quad (6)$$

Electron affinity refers to the capability of a ligand to accept precisely one electron from a donor. However, in many kinds of bonding, viz., covalent, dative, or hydrogen bonding, partial charge transfer takes place. In those cases, ω becomes a better descriptor.

The electric dipole polarizability is a measure of the linear response of the electron density in the presence of an infinitesimal electric field, \mathbf{F} , and it represents a second-order variation in energy

$$\alpha_{a,b} = -\left(\frac{\partial^2 E}{\partial \mathbf{F}_a \partial \mathbf{F}_b}\right) \qquad a,b = x, y, z \tag{7}$$

The polarizability α is calculated as the mean value, as given in the following equation

$$\langle \alpha \rangle = \frac{1}{3} (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})$$
 (8)

Alternatively, using the Δ SCF finite difference approach, we can calculate the IP and EA for the *N*-electron system as follows:

$$IP \approx E(N-1) - E(N) \qquad EA \approx E(N) - E(N+1)$$
(9)

where E(N) is the electronic energy for the *N*-electron system. Using the IP and *EA* values from eq 9, we can calculate the corresponding values of the chemical potential, the chemical hardness, and the electrophilicity index using eqs 4 and 5.

Results and Discussion

All-Metal Aromatic Molecule Al4²⁻ and Its Family. Figure 1 presents the optimized structures of Al42- with various symmetries such as $D_{\infty h}$, D_{3h} , D_{2h} , and D_{4h} and associated MAl₄⁻ (M = Li, Na, K, and Cu) compounds with different symmetries such as $C_{\infty v}$, C_{4v} , C_{2v} , and C_s . The Al₄²⁻ unit with $D_{\infty h}$, D_{3h} , D_{2h} , and D_{4h} point groups designated as A, B, C, D, and M_i, with i = 1, 2, 3, and 4, is used for Li, Na, K, and Cu, respectively. Two different ways of attachment of the metal ion to the Al₄²⁻ unit give rise to B1- and B2-, C1- and C2-, and D1- and D2-like structures whose explicit forms are depicted in Figure 1. The geometries of C, $B1(M_i)C_{2\nu}$, $B2(M_i)C_{2\nu}$, and $C2(M_i)C_s$ are optimized with restrictions on the bond lengths, bond angles, and dihedral angles, as mentioned in the footnotes of Tables 1-5; otherwise, the optimization does not converge. The number of imaginary frequencies (NIMAG) is zero in all the unrestricted cases except $KAl_4^{-}(C_{\infty v})$. The geometryconstrained $Al_4^{2-}(D_{2h})$ is found with zero NIMAG, but in most cases, the geometry-constrained isomers are found with nonzero NIMAG, as expected. Nonzero NIMAG values are mentioned in the corresponding figures. It may be noted that nonzero NIMAG values are reported in the past for similar systems.^{8,15}

Tables 1–5 show the energy, polarizability, hardness, chemical potential, and electrophilicity of Al_4^{2-} and MAl_4^{-} (M =

Figure 1. Optimized structures of various isomers of $Al_{4^{2-}}$ and their $MAl_{4^{-}}$ complexes (M = Li, Na, K, and Cu).

TABLE 1: Energy (*E*), Relative Energy (E_R), Polarizability (α), Hardness (η), Chemical Potential (μ), and the Electrophilicity (ω) Values of Different Isomers of Al₄²⁻

					Koopmans ^c			ΔSCF^{c}	
Al_4^{2-}	E^{a}	$E_{ m R}{}^a$	α^b	η	μ	ω	η	μ	ω
$D_{\infty h}$	-969.698	0.0425	675.82	0.5286	3.185	9.5955	1.5117	3.1058	3.1905
D_{3h} D_{2h}^{d}	-969.702 -969.692	0.0382	665.29 585.83	0.7916	3.5802 3.7287	8.0964 85.581	1.7408	3.4148 3.6545	3.3495 5.9102
D_{4h}	-969.740	0.0000	525.79	0.9773	3.8797	7.7008	1.9647	3.6248	3.3438

^a In hartrees. ^b In atomic units (au). ^c In electronvolts (eV). ^d Geometrical constraint: 1-2 = 2.50 Å.

TABLE 2: Energy (*E*), Relative Energy (E_R), Polarizability (α), Hardness (η), Chemical Potential (μ), and the Electrophilicity (ω) Values of Different Isomers of LiAl₄⁻

LiAl ₄ ⁻ cluster						Koopmans ^c			ΔSCF^{c}	
Al_4^{2-}	LiAl ₄ -	E^{a}	$E_{R}{}^{a}$	α^b	η	μ	ω	η	μ	ω
$D_{\infty h}$	$C_{\infty v}$	-977.278	0.084	686.38	0.380	-0.003	1E-05	1.273	-0.183	0.013
$D_{3h}{}^d$	$C_{2v} 1$	-977.294	0.068	618.58	0.446	0.082	0.008	1.387	-0.119	0.005
	$C_{2v} 2$	-977.312	0.050	428.34	0.685	0.159	0.018	1.750	-0.091	0.002
D_{2h}	$C_s 1$	-977.316	0.046	572.07	0.542	0.151	0.021	1.441	-0.138	0.007
	$C_s 2^e$	-977.331	0.030	406.02	0.482	0.157	0.025	1.526	-0.063	0.001
D_{4h}	C_{2v}	-977.357	0.005	414.45	0.838	0.235	0.033	1.765	-0.155	0.007
	C_{4v}	-977.362	0.000	375.03	1.011	0.350	0.061	3.622	1.633	0.368

^{*a*} In hartrees. ^{*b*} In atomic units (au). ^{*c*} In electronvolts (eV). ^{*d*} Geometrical constraints: $\angle 1-2-4 = \angle 3-2-4 = 120.0^{\circ}$. ^{*e*} Geometrical constraint: 1-2 = 2.50 Å.

Li, Na, K, and Cu) molecules. The last three quantities are reported for both Koopmans' and Δ SCF calculations. It may be noted that they provide different trends in some cases (Table 5) because of the breakdown of the Koopmans theorem. Corresponding reaction energies and NICS (0) and NICS (1) values of these molecules are presented in Tables 6 and 7, respectively.

It is observed that the Al₄²⁻ molecule can exist in three possible stable isomeric forms with point group symmetries $D_{\infty h}$, D_{3h} , and D_{4h} . Among these isomers, Al₄²⁻ with D_{4h} symmetry is found to be the energetically most stable, as reported by Li

et al.⁶ The D_{2h} isomer is not stable and hence is optimized with a geometrically constrained bond length (Figure 1). It is heartening to note that the D_{4h} isomer is the least polarizable and the hardest (both Koopmans' and Δ SCF results) and hence obeys the minimum polarizability and maximum hardness principles.

Although Al_4^{2-} with D_{3h} symmetry is stable, none of its MAl_4^- complexes are stable and are optimized with restrictions on bond lengths, bond angles, and dihedral angles. Their NIMAG values are nonzero in most cases. On the other hand, MAl_4^- complexes with C_s symmetry in a specific sense (C1-

TABLE 3: Energy (*E*), Relative Energy (E_R), Polarizability (α), Hardness (η), Chemical Potential (μ), and the Electrophilicity (ω) Values of Different Isomers of NaAl₄⁻

$NaAl_4^-$ cluster						Koopmans ^c			ΔSCF^{c}	
Al_4^{2-}	NaAl ₄ ⁻	E^{a}	$E_{\rm R}{}^a$	α^{b}	η	μ	ω	η	μ	ω
$D_{\infty h}$	$C_{\infty v}$	-1132.063	0.081	719.79	0.370	-0.042	0.002	1.272	-0.192	0.014
D_{3h}^{d}	$C_{2v} 1$	-1132.080	0.064	641.89	0.476	0.062	0.004	1.426	-0.148	0.008
	$C_{2v} 2$	-1132.085	0.059	489.17	0.529	0.093	0.008	1.586	-0.099	0.003
D_{2h}	$C_s 1$	-1132.100	0.044	615.20	0.432	-0.036	0.002	1.366	-0.172	0.011
	$C_s 2^e$	-1132.109	0.035	462.98	0.458	0.127	0.018	1.484	-0.044	0.001
D_{4h}	C_{2v}	-1132.135	0.009	458.25	0.724	0.171	0.020	1.671	-0.178	0.010
	C_{4v}	-1132.144	0.000	404.27	0.917	0.354	0.068	2.672	0.810	0.123

^{*a*} In hartrees. ^{*b*} In atomic units (au). ^{*c*} In electronvolts (eV). ^{*d*} Geometrical constraints: $\angle 1 - 2 - 4 = \angle 3 - 2 - 4 = 120.0^{\circ}$. ^{*e*} Geometrical constraint: 1 - 2 = 2.50 Å.

TABLE 4: Energy (*E*), Relative Energy (E_R), Polarizability (α), Hardness (η), Chemical Potential (μ), and the Electrophilicity (ω) Values of Different Isomers of KAl₄⁻

KAl ₄ ⁻ cluster			Koopmans ^c					$\Delta \mathrm{SCF}^c$		
Al_4^{2-}	KAl_4^-	E^a	$E_{\rm R}{}^a$	α^b	η	μ	ω	η	μ	ω
$D_{\infty h}$	$C_{\infty v}$	-1569.696	0.081	922.94	0.259	-0.053	0.005	1.090	-0.181	0.015
C_{3h}	$C_{2v} 1^d$	-1569.713	0.064	824.49	0.380	0.029	0.001	1.238	-0.151	0.009
	$C_{2v} 2^{d,e}$	-1569.710	0.059	613.90	0.435	0.156	0.028	1.404	-0.157	0.009
D_{2h}^{e}	$C_s 1$	-1569.758	0.019	637.75	0.531	0.065	0.004	1.399	-0.195	0.014
	$C_s 2^f$	-1569.740	0.037	622.92	0.418	0.183	0.040	1.205	-0.128	0.007
D_{4h}	C_{2v}	-1569.768	0.009	574.81	0.573	0.140	0.017	1.438	-0.201	0.014
	C_{4v}	-1569.777	0.000	471.43	0.739	0.269	0.049	1.545	-0.164	0.009

^{*a*} In hartrees. ^{*b*} In atomic units (au). ^{*c*} In electronvolts (eV). ^{*d*} Geometrical constraints: $\angle 1 - 2 - 4 = \angle 3 - 2 - 4 = 120.0^{\circ}$. ^{*e*} Geometrical constraint: $\angle 1 - 2 - 3 - 4 = 0.0^{\circ}$. ^{*f*} Geometrical constraint: 1 - 2 = 2.50 Å.

TABLE 5: Energy (*E*), Relative Energy (E_R), Polarizability (α), Hardness (η), Chemical Potential (μ), and the Electrophilicity (ω) Values of Different Isomers of CuAl₄⁻

$CuAl_4^-$ cluster						Koopmans ^c			ΔSCF^{c}	
Al_4^{2-}	$CuAl_4^-$	E^{a}	$E_{\rm R}{}^a$	α^{b}	η	μ	ω	η	μ	ω
$D_{\infty h}$	$C_{\infty v}$	-2610.285	0.086	500.60	0.560	-0.089	0.007	1.662	-0.122	0.005
C_{3h}^d	$C_{2v} 1$	-2610.306	0.065	448.85	0.656	0.065	0.003	2.872	-0.422	0.031
	$C_{2v} 2$	-2610.323	0.048	380.32	0.611	0.016	2E-04	2.198	0.216	0.011
D_{2h}	$C_s 1$	-2610.326	0.045	396.05	0.409	-0.121	0.018	1.886	-0.450	0.054
	$C_s 2^e$	-2610.347	0.025	334.64	0.577	-0.035	0.001	1.875	-0.139	0.005
D_{4h}	C_{2v}	-2610.363	0.009	343.96	1.018	0.237	0.028	2.370	0.145	0.004
	C_{4v}	-2610.371	0.000	331.24	0.999	0.291	0.042	2.933	-0.426	0.031

^{*a*} In hartrees. ^{*b*} In atomic units (au). ^{*c*} In electronvolts (eV). ^{*d*} Geometrical constraints: $\angle 1-2-4 = \angle 3-2-4 = 120.0^{\circ}$. ^{*e*} Geometrical constraint 1-2 = 2.50 Å.

TABLE 6: Reaction Energies (E_{R^*}) of the Reaction Producing MAl₄⁻ Isomers^a

reaction with $Al_{4^{2-}}(D_{4h})$ $M^+ + Al_{4^{2-}} \rightarrow MAl_{4^{-a}}$	product	reactant energy ^b $E_{\rm R} = E_{\rm M^+} + E_{\rm Al4^{2-}}$	product energy ^b $E_{\rm P} = E_{\rm MAl4^-}$	reaction energy ^b $E_{R^*} = E_P - E_R$
$Li^+ + Al_4^{2-} \rightarrow LiAl_4^-$	C_{2v}	-977.025	-977.357	-0.331164
	C_{4v}	-977.025	-977.362	-0.336355
$Na^+ + Al_4^{2-} \rightarrow NaAl_4^-$	C_{2v}	-1131.83	-1132.13	-0.306727
	C_{4v}	-1131.83	-1132.14	-0.315900
$K^+ + Al_4^{2-} \rightarrow KAl_4^{}$	C_{2v}	-1569.50	-1569.77	-0.266690
	C_{4v}	-1569.50	-1569.78	-0.275576
$Cu^+ + Al_4^{2-} \rightarrow CuAl_4^-$	C_{2v}	-2609.92	-2610.36	-0.445191
	C_{4v}	-2609.92	-2610.37	-0.453965

 a M = Li, Na, K, and Cu. b In hartrees.

 $(M_i)C_s)$ are stable, although the Al₄²⁻ unit in it with D_{2h} symmetry is unstable. In all the MAl₄⁻ cases, $C_{2\nu}$ and $C_{4\nu}$ structures are stable and the minimum energy structures are of $C_{4\nu}$ symmetry with the D_{4h} Al₄²⁻ unit intact, as shown by Li et al.⁶ Minimum energy structures correspond to the minimum polarizability and maximum hardness in all cases (only the Koopmans approximation gives a slightly harder $C_{2\nu}$ CuAl₄⁻ isomer than that of the $C_{4\nu}$ counterpart, but Δ SCF provides the correct result in all cases), as expected from the MPP and the MHP.

The reaction energies with C_{4v} symmetry are less than those with C_{2v} symmetry for all MAl₄⁻ compounds, confirming the

larger stability of the former. The order of reaction energies is $CuAl_4^- < LiAl_4^- < NaAl_4^- < KAl_4^-$ (both C_{2v} and C_{4v}), prescribing the greater complexation power of alkali metals which increases with an increase in size and electropositive nature. Although the NICS values suggest that both C_{4v} and C_{2v} symmetric MAl_4⁻ complexes are aromatic in nature, the C_{2v} molecules are more aromatic (NICS value is less negative) than their C_{4v} counterparts.

To understand the aromaticity in these systems better vis-avis the minimum energy, minimum polarizability, and maximum hardness criteria, we define three different aromaticity indices, $\Delta X = X_{\text{cyclic}} - X_{\text{open}} (X = E, \alpha, \text{ and } \eta)$. For cyclic structures,

Figure 2. Optimized structures of isomers of Al₄⁴⁻ and their Li₃Al₄⁻ complexes.

TABLE 7: Nucleus Independent	Chemical Shift (NIC	CS) Values of Al ₄	^{2–} and its MAl ₄ [–]	Complexes ^a
------------------------------	---------------------	-------------------------------	---	------------------------

	Al_{4}^{2-}	LiA	LiAl ₄ ⁻ Na		aAl ₄ ⁻ K		KAl_4^-		$CuAl_4^-$	
	D_{4h}	C_{2v}	C_{4v}	C_{2v}	C_{4v}	C_{2v}	C_{4v}	C_{2v}	C_{4v}	
$\frac{\text{NICS } (0)^b}{\text{NICS } (1)^b}$	-34.4166 -27.3881	-35.492 -27.564	-18.481 -22.712	-36.673 -28.334	-24.072 -26.958	-35.473 -27.536	-26.875 -25.626	-38.760 -29.531	-12.640 -13.403	

 a M = Li, Na, K, and Cu. b In parts per million (ppm).

TABLE 8: Relative Energy (ΔE), Relative Polarizability ($\Delta \alpha$), and Relative Hardness ($\Delta \eta$) Values for Various Isomers of Al₄²⁻

	cyclic (Al ₄ ^{2–})		open (Al ₄ ^{2–})	$\Delta X = X_{\rm cycl}$	$_{\rm ic} - X_{\rm open}{}^a$
X^a	D_{3h}	D_{4h}	$D_{\infty h}$	D_{3h}	D_{4h}
E^b	-969.7023	-969.7405	-969.6980	-0.004339	-0.04253
α^{c}	665.2917	525.7897	675.8190	-10.52733	-150.029
η^{d}	1.740756	1.964724	1.511698	0.229058	0.45303

 ${}^{a}X = E$, α , and η . b In hartrees. c In atomic units (au). d In electronvolts (eV) (Δ SCF).

we consider the MAl₄⁻ system with $C_{2\nu}$ and $C_{4\nu}$ structures with the Al₄²⁻ unit with D_{4h} symmetry, and for the linear structures, corresponding $C_{\infty\nu}$ structures for MAl₄⁻ ($D_{\infty h}$ for Al₄²⁻) are taken. We expect an aromatic system to possess negative ΔE and $\Delta \alpha$ values and positive $\Delta \eta$ values. It is worth noting that the ΔE , $\Delta \alpha$, and $\Delta \eta$ values suggest that Al₄²⁻ is aromatic for both D_{4h} and D_{3h} symmetries, and the former isomer is more aromatic (Table 8). All the MAl₄⁻ systems are aromatic, and as expected, the $C_{4\nu}$ isomers are more aromatic than the corresponding $C_{2\nu}$ isomers (Table 9).

All-Metal Antiaromatic Molecule Al_4^{4-} and Its Family. Different isomers of Al_4^{4-} and $Li_3Al_4^-$ with selected geometrical parameters are presented in Figure 2. Tables 10–12 provide the energy, polarizability, hardness, chemical potential, and electrophilicity values of Al_4^{4-} (singlet), Al_4^{4-} (triplet), and Li_4Al_4 , respectively. The structures of Li_4Al_4 are shown in Figure 3. It is very important to note that Al_4^{4-} (both singlet and triplet) with a linear structure is energetically slightly more stable than its cyclic counterpart and hence is antiaromatic, as suggested by the corresponding ELF values.¹¹ However, the $\Delta \alpha$ and $\Delta \eta$ values predict the overall aromatic character for the singlet, as is prescribed by NICS values¹² and magnetic field induced current density values.¹³ However, for the triplet, $\Delta \alpha$ predicts it to be antiaromatic and

TABLE 9: Kelauve Energy (ΔE), Kelauve Polarizability ($\Delta \alpha$), and Kelauve Hardness ($\Delta \eta$) values for MAI
--

		cyclic/closed systems with $Al_4^{2-}(D_{4h})$ isomer			$\Delta X = X_{\text{cyclic}} - X_{\text{open}}{}^a$	
X^a	Al_4^-	$\frac{\text{MAl}_4^-}{(C_{2v})}$	$\frac{\text{MAl}_4^-}{(C_{4v})}$	open system $(D_{\infty h})$	C_{2v}	C_{4v}
E^b	LiAl4 ⁻	-977.3566	-977.3618	-977.2781	-0.078494	-0.0836851
	$NaAl_4^-$	-1132.1350	-1132.1440	-1132.0630	-0.072060	-0.0812325
	KAl_4^-	-1569.7683	-1569.7772	-1569.6961	-0.072186	-0.0810714
	$CuAl_4^-$	-2610.3626	-2610.3714	-2610.2854	-0.077182	-0.0859562
α^{c}	$LiAl_4^-$	414.4507	375.031	686.377	-271.926	-311.346
	NaAl ₄ ⁻	458.2503	404.265	719.792	-261.542	-315.527
	KAl_4^-	574.8107	471.425	922.935	-348.124	-451.510
	$CuAl_4^-$	343.9567	331.2433	500.603	-156.646	-169.360
η^d	LiAl ₄ -	1.764831	3.621905	1.273489	0.491342	2.348416
,	NaAl ₄ ⁻	1.670897	2.671846	1.272470	0.398430	1.399374
	KAl_4^-	1.438355	1.545465	1.089918	0.348436	0.455547
	CuAl ₄ -	2.369911	2,932991	1.661608	0.708303	1.271383

^{*a*} M = Li, Na, K, and Cu; X = E, α , and η . ^{*b*} In hartrees. ^{*c*} In atomic units (au). ^{*d*} In electronvolts (eV) (Δ SCF).

TABLE 10: Energy (*E*), Polarizability (α), Hardness (η), Chemical Potential (μ), Electrophilicity (ω), and the ΔX^a Values of Different Isomers of Al₄⁴⁻ (Singlet)

				Koopmans ^d			ΔSCF^d	
Al_4^{4-}	E^b	α^{c}	η	μ	ω	η	μ	ω
D_{2h}	-969.2617	1910.644	0.480	8.796	80.568	1.194	8.703	31.714
$D_{\infty h}$	-969.2664	1915.578	0.241	8.082	135.304	0.954	8.062	34.066
	$\Delta E = 0.0$	$0047391, \Delta \alpha = -4$.934333333, Δ	$\eta = 0.2387800$	35 (Koopmans); 0	.240252172 (Δ	SCF)	
$\Delta X = X_{D_{2h}} - X_{D_{\infty h}}{}^a$								

 ${}^{a}X = E, \alpha, \text{ and } \eta. {}^{b}$ In hartrees. c In atomic units (au). d In electronvolts (eV).

TABLE 11: Energy (*E*), Polarizability (α), Hardness (η), Chemical Potential (μ), Electrophilicity (ω), and the ΔX^a Values of Different Isomers of Al₄^{4–} (Triplet)

				Koopmans ^d			ΔSCF^d	
Al_4^{4-}	E^b	α^{c}	η	μ	ω	η	μ	ω
D_{2h}	-969.2592	2276.3937	0.5956	8.540	69.982	1.206	8.719	31.521
$D_{\infty h}$	-969.2750	2149.0253	0.4238	7.953	76.984	1.187	8.055	27.321
$\Delta E = 0.0158, \Delta \alpha = 127.3684, \Delta \eta = 0.1718$ (Koopmans); 0.019 (Δ SCF)								
$\Delta X = X_{D_{2h}} - X_{D_{wh}}^{a}$								

$$^{a}X = E$$
, α , and η . b In hartrees. c In atomic units (au). d In electronvolts (eV).

TABLE 12: Energy (E), Polarizability (α), Hardness (η), Chemical Potential (μ) and the Electrophilicity (ω) Values of the Different Isomers of Li₄Al₄

					Koopmans ^d			ΔSCF^d	
Li_4Al_4	E^{a}	NICS $(0)^b$	α^c	η	μ	ω	η	μ	ω
C_{2h}	-999.9331	-11.182	392.791	0.7203	-2.786	5.389	1.998	-2.868	2.058
C_{2v}	-999.9138	28.5687	364.974	0.5170	-3.044	8.962	1.822	-3.125	2.679
D_{2h}	-999.9324	-3.6252	452.724	0.7695	-2.469	3.962	1.920	-2.579	1.732

^a In hartrees. ^b In parts per million (ppm). ^c In atomic units (au). ^d In electronvolts (eV).

Figure 3. Optimized structures of isomers of Li₄Al₄.

TABLE 13: Reaction Energies (*E*_{R*}) of the Reaction Producing Li₄Al₄ Isomers

reaction	product	reactant energy ^{<i>a</i>} $E_{\rm R} = E_{{\rm Li}_4^{4+}} + E_{{\rm Al}_4^{4-}}$	$\frac{\text{product energy}^a}{E_{\text{P}} = E_{\text{Li}_4\text{Al}_4}}$	reaction energy ^{<i>a</i>} $E_{R^*} = E_P - E_R$
$Li_4^{4+} + Al_4^{4-} \rightarrow Li_4Al_4$	C_{2h}	-998.40136	-999.9331	-1.53174
	C_{2v}	-998.40136	-999.91382	-1.51246
	D_{2h}	-998.40136	-999.93242	-1.53105

^a In hartrees.

Figure 4. Optimized structures of Li₄Al₄ and its complexes.

 $\Delta\eta$ predicts it to be aromatic. This fact highlights the inadequacy of all these descriptors in unequivocally settling the issue of the aromatic vs antiaromatic nature of Al₄⁴⁻. Of course, the ΔE value is so small that it may as well change its sign in other levels of calculation. The aromaticity of Al₄²⁻ is, however, proved by all the descriptors without any confusion. It is transparent that Al_4^{4-} gets stabilized by complexation to form Li_4Al_4 as the energy and polarizability decrease and the hardness increases during the complexation process. Table 13 reports the corresponding reaction energies which show that complexation is a thermodynamically favorable process.

TABLE 14: Energy (*E*), Relative Energy (E_R), Polarizability (α), Hardness (η), Chemical Potential (μ), and the Electrophilicity (ω) Values of Different Isomers of Li₃Al₄⁻

Li ₃ A	A_4^- cluster					Koopmans ^c			ΔSCF^{c}	
Al_4^{4-}	Li ₃ Al ₄ -	E^{a}	$E_{ m R}{}^a$	α^{b}	η	μ	ω	η	μ	ω
D_{2h}	C_s (singlet)	-992.4335	0.001	564.935	0.603	0.520	0.224	1.388	0.073	0.002
	C_s (triplet)	-992.4339	6E-4	530.666	0.736	0.409	0.137	1.460	0.003	3E-6
	C_s (fork)	-992.4345	0	522.497	0.741	0.381	0.098	1.516	-0.026	2E-4
	C_2 (hood)	-992.4303	0.004	602.844	0.650	0.495	0.188	1.393	0.046	8E-4
	C_1 (scooter)	-992.4308	0.004	618.850	0.618	0.478	0.185	1.356	0.062	0.001
	C_{2v} (rabbit)	-992.4194	0.015	726.708	0.577	0.417	0.151	1.439	0.161	0.009
$D_{\circ\circ h}$	$C_{2v}(\text{crown})$	-992.3828	0.052	716.297	0.622	-0.082	0.005	1.627	-0.162	0.008
	C_s (crown)	-992.4045	0.030	720.726	0.668	0.087	0.006	1.513	-0.135	0.006

^a In hartrees. ^b In atomic units (au). ^c In electronvolts (eV).

TABLE 15: Reaction Energies (E_{R^*}) of the Reaction Producing Li₃Al₄⁻ Isomers

reaction	product	reactant energy ^{<i>a</i>} $E_{\rm R} = E_{{\rm Li}_3^{3+}} + E_{{\rm Al}_4^{4-}}$	product energy ^{<i>a</i>} $E_{\rm P} = E_{\rm Li_3Al_4^-}$	reaction energy ^{<i>a</i>} $E_{R^*} = E_P - E_R$
$Li_3^{3+} + Al_4^{4-} \rightarrow Li_3Al_4^{-}$	C_s (singlet)	-991.1164	-992.4335 -002.4330	-1.3170
	C_s (fork)	-991.1164	-992.4339	-1.3181
	C_2 (hood) C_1 (scooter)	-991.1164 -991.1164	-992.4303 -992.4308	-1.3139 -1.3144
	C_{2v} (rabbit)	-991.1164	-992.4194	-1.3030
	C_{2v} (crown) C_s (crown)	-991.1164 -991.1164	-992.3828 -992.4045	-1.2664 -1.2881

^a In hartrees.

TABLE 16: Nucleus Independent Chemical Shift (NICS) Values of Al4⁴⁻ and Its Li₄Al₄ and Li₃Al_{4⁻} Complexes

				${ m Li}_{3}{ m Al}_{4}^{-}$				
						at cage		
	$Al_4{}^{4-} D_{2h}$	${f Li_4Al_4} \ C_{2h}$	C _s (singlet)	C _s (triplet)	C_{2v} (rabbit)	C _s (fork)	C ₂ (hood)	C_1 (scooter)
NICS $(0)^a$ NICS $(1)^a$	-5.711 - 12.058	-11.182 1.526	-5.419 7.809	-29.110 -20.458	-7.0845 -11.9074	-6.1501	-13.2378	-15.2067

^{*a*} In parts per million (ppm).

TABLE 17: Energy (*E*), Polarizability (α), Hardness (η), Chemical Potential (μ), Electrophilicity (ω), and the $\Delta \alpha^{1/3}$ Values of the Li₄Al₄ Isomer and Its Complexes

				Koopmans ^d	
Li_4Al_4 complexes ^a	E^b	α^c	η	μ	ω
Li ₄ Al ₄ Li ₄ Al ₄ Fe(CO) ₃ (Li ₄ Al ₄) ₂ Ni bis(Li ₄ Al ₄ nickel(II) chloride)	-999.932 -2603.863 -3508.302 -6857.962	389.352 370.024 844.603 660.017	0.720699 1.167650 0.705869 0.783286	-2.78660 -3.25832 -2.64225 -3.71125	5.38724 4.54615 4.94530 8.79207
$Li_4Al_4 + Fe(CO)_3 \rightarrow Li_4Al_4Fe(CO)_3$ 389.352 69.6083 370.024				$\Delta \alpha^{1/3} = -4.236$	5469017 (1)
$\begin{array}{ccc} 2\text{Li}_{4}\text{Al}_{4} + & \text{Ni} & \rightarrow (\text{Li}_{4}\text{Al}_{4})_{2}\text{Ni} \\ 389.352 & 1.994 & 844.603 \end{array}$				$\Delta \alpha^{1/3} = -6.410$)258433 (2)
$\begin{array}{r} 2\text{Li}_{4}\text{Al}_{4} + 2\text{Ni}^{2+} + 4\text{Cl}^{-} \rightarrow \text{bis}(\text{Al}_{4}\text{Li}_{4} \\ 389.352 & 1.2913 & 5.121 \end{array}$	nickel(II) chloride) 660.017	1		$\Delta \alpha^{1/3} = -14.97$	7007265 (3)

^a Single-point calculation with the geometries and basis in ref 19. ^b In hartrees. ^c In atomic units (au). ^d In electronvolts (eV).

FABLE 18: Reaction	Energies ($E_{\rm R}^*$) of the Reaction	Producing the Various	Complexes of the Li ₄ Al ₄ Isomer
---------------------------	--------------------------	-------------------	-----------------------	---

reaction	reactant energy ^{<i>a</i>} $(E_{\rm R})$	product energy ^{<i>a</i>} $(E_{\rm P})$	reaction energy ^{<i>a</i>} $E_{R^*} = E_P - E_R$
$Li_4Al_4 + Fe(CO)_3 \rightarrow Li_4Al_4Fe(CO)_3$	-2603.682 064	-2603.863 147	-0.181 0832
$2Li_4Al_4 + Ni \rightarrow (Li_4Al_4)_2Ni$	-3507.980 983	-3508.301 692	-0.3207089
$2\text{Li}_4\text{Al}_4 + 2\text{Ni}^{2+} + 4\text{Cl}^{-} \rightarrow \text{bis}(\text{Al}_4\text{Li}_4 \text{ nickel}(\text{II}) \text{ chloride})$	-6855.359 727	-6857.961 870	-2.602 1428

Among all the Li₃Al₄⁻ isomers, the C_s ("fork") structure is the most stable (Table 14), as shown by Li et al.⁹ in their DFT calculation. The minimum energy fork structure is the hardest and the least polarizable, as expected from the MHP and the MPP. In this case, Koopmans' and Δ SCF calculations also provide qualitatively different results, owing to the inherent inadequacies of the Koopmans theorem. All the stable structures of Li₃Al₄⁻ possess lower energy, greater hardness, and smaller polarizability values when compared to those of Al₄^{4–}. Reaction energies for the reaction $Li_3^{3+} + Al_4^{4-} \rightarrow Li_3Al_4^{-}$ are provided in Table 15. All the reactions are thermodynamically favorable, and the fork product is the most stable. Note, however, that the NICS (0) and NICS (1) values (Table 16) suggest that the C_s (triplet) is the most aromatic. The Al₄⁴⁻ is overall aromatic (doubly σ -aromatic and singly π -antiaromatic¹²), as shown by others.^{13,19} It becomes more aromatic on complexation, but for the C_s (singlet) structure of Li₃Al₄⁻. Two crown-like structures (NIMAG = 1) and one rabbit-like structure (NIMAG = 0) of Li₃Al₄⁻ are also shown,⁹ all of which are more stable than Al₄⁴⁻ (considering E, α , η , and the reaction energy values). The capped octahedral singlet isomer is the most stable⁹ at the CCSD(T) level of theory.

As in the case of the classic organic antiaromatic molecule cyclobutadiene, stable transition-metal complexes of the allmetal antiaromatic molecule Li₄Al₄ were reported recently,¹⁹ even though there was a confusion regarding its antiaromatic nature.³⁰ We perform single-point calculations with the geometries and basis sets prescribed in ref 19 for Li₄Al₄Fe(CO)₃, (Li₄Al₄)₂Ni, and bis(Li₄Al₄ nickel(II) chloride). Figure 4 depicts their optimized structures. For comparison, the Li₄Al₄ (C_{2h}) structure is also included. Table 17 presents the corresponding E, α , η , μ , and ω values. The energy is less and the hardness is more in all complexes in comparison to the corresponding values for Li₄Al₄, but for (Li₄Al₄)₂Ni, the η is comparable (slightly less) to the η of Li₄Al₄. Therefore, the complexation stabilizes Li₄Al₄. However, the polarizability values do not decrease during complexation. This may be due to the fact that there is more than one reactant. In this situation, Ghanty and Ghosh ²⁹ have prescribed that the average cube root of the polarizability of the products should be less than that of the reactants, according to the MPP. Those values are provided at the bottom of Table 17. It is important to note that the MPP is obeyed in all three cases. Corresponding reaction energies (Table 18) corroborate this result. A decrease in the NICS value (more negative) on complexation implies¹⁹ more aromaticity. In general, the most stable isomers for the antiaromatic class do not obey the MHP and the MPP.

Chemical potential and electrophilicity behavior in all the systems may be summarized as follows. Wherever μ is positive, the system does not want to take any electrons. However, this behavior is not always reflected through the ω values. Two possible reasons may be the quadratic appearance of μ (or χ) in the definition of ω (although large μ or large χ qualitatively predict opposite behavior, with this definition both will produce large ω) and the relative variations in μ (or χ) and η . Corresponding analysis using various local reactivity descriptors is currently underway in our laboratory.

In case the second point does not create a problem, the large negative μ values go along with large ω values, as expected. This shows the inadequacy of μ and ω in predicting aromaticity in a general sense.

Conclusions

In conclusion, the maximum hardness principle and the minimum polarizability principle can adequately describe the stability

and reactivity of all-metal aromatic and antiaromatic compounds such as Al₄²⁻ and Al₄⁴⁻, respectively, and their various alkaliand transition-metal complexes. Although an overall aromaticity of Al4⁴⁻ is prescribed by most of the aromaticity descriptors, it is puzzling to note that the linear Al₄⁴⁻ is energetically slightly more stable than its cyclic counterpart (the triplet state polarizability is also less). Two different aromaticity indices are proposed in light of the various electronic structure principles which successfully complement other known criteria of aromaticity based on energetics and magnetic behavior.

Acknowledgment. This article is dedicated to the memory of Professors A. Kekulé, L. Pauling, and E. Hückel. We thank CSIR, New Delhi, for financial assistance.

References and Notes

(1) Kekulé, A. Ann. Chem. Pharm. 1865, 137, 129.

(2) Pauling, L.; Sherman, J. J. Chem. Phys. 1933, 1, 606. Wheland, G. W.; Pauling, L. J. Am. Chem. Soc. 1935, 57, 2028.

(3) Hückel, E. Z. Phys. 1931, 70, 204.

(4) (a) Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Y. Aromaticity and Antiaromaticity: Electronic and Structural Aspects; J. Wiley & Sons: New York, 1994. (b) Special issue on aromaticity. Chem. Rev. 2001, 101(5).

(5) http://en.wikipedia.org/wiki/Aromatic. http://en.wikipedia.org/wiki/ Antiaromatic.

(6) Li, X.; Kuznetsov, A. E.; Zhang, H.-F.; Boldyrev, A. I.; Wang, L.-S. Science 2001, 291, 859.

(7) Kuznetsov, A. E.; Zhai, H. J.; Wang, L.-S.; Boldyrev, A. I. Inorg. Chem. Commun. 2002, 41, 6062.

(8) Zhan, C.-G.; Zheng, F.; Dixon, D. A. J. Am. Chem. Soc. 2002, 124, 14795.

(9) Kuznetsov, A.; Birch, K.; Boldyrev, A. I.; Li, X.; Zhai, H.; Wang, L.-S. Science 2003, 300, 622.

(10) Shetty, S.; Kanhere, D. G.; Pal, S. J. Phys. Chem. A 2004, 108, 628.

(11) Santos, J. C.; Andres, J.; Aizman, A.; Fuentealba, P. J. Chem. Theory Comput. 2005, 1, 83.

(12) Chen, Z.; Corminboeuf, C.; Heine, T.; Bohmann, J.; Schleyer, P. v. R. J. Am. Chem. Soc. 2003, 125, 13930. Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. R. v. E. J. Am. Chem. Soc. 1996, 118, 6317. Schleyer, P. v. R.; Jiao, H.; Hommes, N. v. E.; Malkin, V. G.; Malkina, O. L. J. Am. Chem. Soc. 1997, 119, 12669.

(13) Havenith, R. W. A.; Fowler, P. W.; Steiner, E.; Shetty, S.; Kanhere, D.; Pal, S. Phys. Chem. Chem. Phys. 2004, 6, 285.

(14) Tsipis, A. C.; Tsipis, C. A. J. Am. Chem. Soc. 2003, 125, 1136. Tsipis, A. C.; Karagiannis, E. E.; Kladou, P. F.; Tsipis, C. A. J. Am. Chem. Soc. 2004, 126, 12916.

(15) (a) Kuznetsov, A. E.; Corbet, J. D.; Wang, L.-S.; Boldyrev, A. I. Angew. Chem., Int. Ed. 2001, 40, 3369. (b) Kuznetsov, A. E.; Boldyrev,

A. I.; Li, X.; Wang, L.-S. J. Am. Chem. Soc. 2001, 123, 8825 (16) (a) Schiemenz, B.; Huttner, G. Angew. Chem., Int. Ed. 1993, 32, 297. (b) King, R. B.; Heine, T.; Corminboeuf, C.; Schleyer, P. v. R. J. Am.

Chem. Soc. 2004, 126, 430. (17) Zhai, H. J.; Kuznetsov, A. E.; Boldyrev, A. I.; Wang, L. S.

ChemPhysChem 2004, 5, 1885. (18) Mercero, J. M.; Ugalde, J. M. J. Am. Chem. Soc. 2004, 126, 3380.

(19) Datta, A.; Pati, S. K. J. Am. Chem. Soc. 2005, 127, 3496.

(20) Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.

(21) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003, 103. 1793.

(22) Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960.

(23) Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. J. Chem. Phys. 1978, 68, 3801.

(24) Pearson, R. G. J. Am. Chem. Soc. 1963, 85, 3533

(25) Parr, R. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512.

Chattaraj, P. K.; Lee, H.; Parr, R. G. J. Am. Chem. Soc. 1991, 113, 1855.

Chattaraj, P. K.; Schleyer, P. v. R. J. Am. Chem. Soc. 1994, 116, 1067.

Chattaraj, P. K.; Maiti, B. J. Am. Chem. Soc. 2003, 125, 2705 (26) Parr, R. G.; Szentpaly, L. v.; Liu, S. J. Am. Chem. Soc. 1999, 121,

1922. (27) Pearson, R. G. J. Chem. Educ. 1987, 64, 561. Parr, R. G.; Chattaraj,

P. K. J. Am. Chem. Soc. 1991, 113, 1854. Ayers, P. W.; Parr, R. G. J. Am. Chem. Soc. 2000, 122, 2010. Chattaraj, P. K.; Fuentealba, P.; Gomez, B.; Contreras, R. J. Am. Chem. Soc. 2000, 122, 348.

(28) Chattaraj, P. K.; Sengupta, S. J. Phys. Chem. 1996, 100, 16126.

(29) Ghanty, T. K.; Ghosh, S. K. J. Phys. Chem. 1996, 100, 12295.

(30) Ritter, S. Chem. Eng. News 2003, 81, 23.